
Approaches for Teaching Computational Thinking
Strategies in an Educational Game: A Position Paper

Aaron Bauer, Eric Butler, Zoran Popović
Center for Game Science

Computer Science & Engineering
University of Washington

Seattle, WA 98195
Email:{awb, edbutler, zoran}@cs.washington.edu

Abstract—Computer science is expanding into K12 education
and numerous educational games and systems have been cre-
ated to teach programming skills, including many block-based
programming environments. Teaching computational thinking
has received particular attention, and more research is needed
on using educational games to directly teach computational
thinking skills. We propose to investigate this using Dragon
Architect, an educational block-based programming game we
are developing. Specifically, we wish to study ways of directly
teaching computational thinking strategies such as divide and
conquer in an educational game, as well as ways to evaluate our
approaches.

Keywords—block-based programming, game-based learning,
computational thinking, CS education

I. INTRODUCTION

Teaching computational thinking has been a focus of recent
efforts to broaden the reach of computer science education,
including those using block-based programming environments.
In their review of recent literature on teaching computational
thinking, Lye and Koh [1] use Brennan and Resnick’s defini-
tion of computational thinking as consisting of concepts, prac-
tices, and perspectives [2]. Concepts are basic programming
ideas (such as variables, conditionals, and loops), practices are
the problem-solving strategies used while programming (such
as “being incremental and iterative” or “using abstraction and
modularization”), and perspectives are the relationships with
the wider technological world. Lye and Koh conclude that
more research is needed on teaching computational thinking
practices in particular. How to directly teach such skills in is
an open problem, including in the context of a block-based
programming environment. Teaching skills directly involves
providing appropriate guidance and scaffolding to help stu-
dents acquire those skills, rather than just exposing them to
environments where those skills are necessary.

In this paper we propose investigating directly teaching
computational practices in an educational block-based pro-
gramming game called Dragon Architect1. We briefly discuss
existing work on teaching computational thinking and the
direct teaching of problem-solving strategies. We describe
ways this might be attempted in Dragon Architect, as well
as ways we might evaluate such work.

1Available at http://centerforgamescience.org/portfolio/dragon-architect

II. GAME DESCRIPTION

Before we discuss approaches for teaching computational
thinking, we describe basic information about Dragon Archi-
tect to provide context for the discussion. In Dragon Architect,
players write code to control a dragon that builds 3D structures
in a cube world. Our game, in development since spring 2014,
is played in a web browser. Similar to other programming
environments, the user interface is separated into two parts:
an area where the player can assemble their code and a
visualization of the 3D environment their code affects (see
Figure 1). The game uses the block-based programming library
Blockly [3] for inputing code.

The player can write programs to move the dragon in three
dimensions and have the dragon place and remove cubes of
various colors. In addition to blocks that control the dragon
directly, players can use definite loops and procedures (see
Figure 2). As players progress through the game, they alternate
between short sequences of puzzles with a specific goal and a
constrained set of available code blocks and an open-ended
sandbox. The game begins with puzzles that introduce the
idea of assembling and running code, as well as the code
blocks for moving the dragon and placing cubes. After that, the
player can creatively experiment and build in the sandbox and
complete other puzzle sequences to make more code blocks
available, switching between sandbox and puzzles at any time.
In this way, the language the player uses to write instructions
for the dragon gradually expands as the player advances.

The popularity and broad appeal of Minecraft [4] motivated
our use of a 3D grid world in which the player’s programs
could place cubes. This choice also makes it natural to
extend our game in the future with exploration, more complex
interaction with the environment, or players working together
in a shared world. Our playtests with Dragon Architect have
shown the premise of programming a dragon in a Minecraft-
like world appeals to younger players of all genders. Common
sandbox activities have included making the dragon travel
very long distances, building big and impressive towers, and
spelling one’s name out of cubes.

III. TEACHING COMPUTATIONAL THINKING STRATEGIES

Many have studied how to increase the presence and effec-
tiveness of computational thinking in computer science educa-



Fig. 1. The player assembles code to control the dragon on the left side, and the dragon and world it inhabits are visualized on the right side. Only a few
different code blocks are available to the player initially, and more are unlocked by completing guided puzzles.

Fig. 2. The programming elements available in Dragon Architect, which
include moving the dragon, placing blocks, definite loops, and procedure
definitions.

tion and education in general (e.g., Barr and Stephenson [5],
Grover and Pea [6]). Furthermore, educational games and
other systems often have teaching computational thinking as
an explicit goal (e.g., Weintrop and Wilensky [7], Kazimoglue
et al. [8]) or have a computational thinking framework built
around them (e.g., Gouws et al. [9], Computational Thinking
with Scratch [10]). A recent review of the literature on teach-
ing computational thinking found that additional empirical
research is needed, especially in the case of computational
thinking practices [1]. We believe the use of educational games
in particular to teach computational thinking skills deserves to
be the focus of more empirical work.

Specifically, we propose to investigate directly teaching
computational thinking strategies in Dragon Architect. Simply
playing in a computational environment where these strategies
are necessary is unlikely to teach students such complex
skills [11]. Instead, we must address how to directly teach
computational thinking skills by investigating which guidance
is effective and how it is best deployed in an educational game.

One computatinal thinking skill of interest is the identifi-
cation and application of problem-solving strategies. A great
deal of recent education research suggests that “curricula
can model such strategies for students” and that appropriate
guidance can “enable students to learn to use these strategies
independently” [12]. Mayer and Wittrock call attention to the
substantial evidence in the education literature for teaching
what they call domain-specific thinking skills and metacogni-
tive skills [13]. The former would include the ability to use a
strategy like divide and conquer, and the latter would include
knowing when and where to employ that strategy. In both
cases, Mayer and Wittrock describe studies (for non-computer
science domains) that have shown teaching these skills directly
can improve learning and performance. It is an open question
whether this can be applied to teaching computational thinking
in a game.

One computational thinking strategy we intend to focus on
in Dragon Architect is divide and conquer. One potential ap-
proach is to lead the player though a top-down deconstruction
of building a castle in order to model iteratively subdividing a
large problem into more manageable subproblems. The player
is presented with a single code block that builds an entire
castle, but discovers the construction has a number of flaws.
The next several puzzles each decompose some part of the
flawed program in order to give the player a chance to repair
it. For example, to enable the player to give the castle the
correct number of walls and towers, the castle code block is
split into a tower block and a wall block that the player uses
to write a corrected castle procedure, as shown Figure 3.

A companion approach is a gradual bottom-up progression
modeling combining the blocks currently available to the
player into more sophisticated constructs. For example, the
player is tasked with writing a program to place a line of
cubes. When this is completed, the player is awarded a new
kind of block that by itself places a line of cubes (i.e., a block
encapsulating the player’s previous program). Subsequent puz-
zles ask the player to use the line block to construct other,
more complicated structures, each time granting the player a
single, encapsulating block.



Fig. 3. The code required by a progression of levels demonstrating the strategy of divide and conquer. In A, the player uses a single code block to build an
entire castle. Then, in B, the player is given an empty FixedCastle procedure, which they must fill with the appropriate number of wall and tower blocks.
Finally, in C, the player is given a completed FixedCastle procedure and must fill in the FixedTower procedure as shown. The final completed castle
is shown on the right.

Evaluating learning outcomes and other effects of these or
similar approaches is a tremendous challenge. Computational
Thinking with Scratch proposes three kinds of assessment: (1)
artifact-based interviews, (2) design scenarios, and (3) learner
documentation [10]. The interviews are intended to engage the
learner in a conversation about the artifacts they have created
and the practices they used. Design scenarios are a sequence
of projects that challenge the learner to critique, extend,
debug, and remix existing code. Finally, learner documentation
focuses on engaging learners in reflection about their learning,
and examples include keeping a journal, commenting code,
and creating a visual walk-through of a project using screen
capture software. We believe these approaches to be promis-
ing, and worthy of further study.

In addition to design scenarios, we propose that more
general kinds of in-game assessments could be useful. Like
Scratch, Dragon Architect provides users a place for unstruc-
tured creative exploration. The effectiveness of an attempt to
teach computational thinking strategies could be assessed by
comparing the programs written by those who completed the
relevant puzzles to those who did not (after controlling for time
played and differences in programs prior to completing the
puzzles). A variety of other in-game metrics could contribute
to an assessment including a player’s solutions to specific
challenges, time taken to complete puzzles, etc.

On-paper assessments (given as pre-test and post-test) could
also serve as an evaluation. Computational thinking skills
might be assessed through language-independent assessments
of computer science knowledge [14] or general problem-
solving assessments such as those developed by the Program
for International Student Assessment [15]. Though neither of
these assessments are explicitely targeted at computational
thinking, they both contain items involving computational
thinking skills. Finally, Grover and Pea suggest “academic
talk” (i.e., student development and use of computational
language) could be leveraged as an additional assessment of
computational thinking [6].

IV. ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research
grant N00014-12-C-0158, the Bill and Melinda Gates Founda-
tion grant OPP1031488, the Hewlett Foundation grant 2012-
8161, Adobe, and Microsoft.

REFERENCES

[1] S. Y. Lye and J. H. L. Koh, “Review on teaching and learning of
computational thinking through programming: What is next for k-12?”
Computers in Human Behavior, vol. 41, pp. 51–61, 2014.

[2] K. Brennan and M. Resnick, “New frameworks for studying and
assessing the development of computational thinking,” in Proceedings
of the American Educational Research Association, 2012.

[3] “Blockly,” https://developers.google.com/blockly/, accessed: 2015-02-
18.

[4] Mojang AB, “Minecraft,” 2011.
[5] V. Barr and C. Stephenson, “Bringing computational thinking to k-12:

what is involved and what is the role of the computer science education
community?” ACM Inroads, vol. 2, no. 1, pp. 48–54, 2011.

[6] S. Grover and R. Pea, “Computational thinking in k–12 a review of the
state of the field,” Educational Researcher, vol. 42, no. 1, pp. 38–43,
2013.

[7] D. Weintrop and U. Wilensky, “Robobuilder: a computational thinking
game,” in SIGCSE, 2013, p. 736.

[8] C. Kazimoglu, M. Kiernan, L. Bacon, and L. Mackinnon, “A serious
game for developing computational thinking and learning introduc-
tory computer programming,” Procedia-Social and Behavioral Sciences,
vol. 47, pp. 1991–1999, 2012.

[9] L. A. Gouws, K. Bradshaw, and P. Wentworth, “Computational thinking
in educational activities: An evaluation of the educational game light-
bot,” in Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, ser. ITiCSE ’13. ACM,
2013, pp. 10–15.

[10] “Computational thinking with scratch,” http://scratched.gse.harvard.edu/
ct/index.html, accessed: 2015-07-23.

[11] R. E. Mayer, “Should there be a three-strikes rule against pure discovery
learning?” American Psychologist, vol. 59, no. 1, p. 14, 2004.

[12] National Research Council, Report of a Workshop on the Scope and
Nature of Computational Thinking. National Academies Press, 2010.

[13] R. E. Mayer and M. C. Wittrock, “Problem solving transfer,” in
Handbook of educational psychology, D. C. Berliner and R. C. Calfee,
Eds. Routledge, 1996.

[14] A. E. Tew and M. Guzdial, “The fcs1: a language independent assess-
ment of cs1 knowledge,” in Proceedings of the 42nd ACM technical
symposium on Computer science education. ACM, 2011, pp. 111–116.

[15] “Program for international student assessment,” http://www.oecd.org/
pisa/, accessed: 2015-07-23.


