
Automated Redesign of Local Playspace Properties

Aaron Bauer, Seth Cooper, Zoran Popović
Center for Game Science, Dept. of Computer Science & Engineering, University of Washington

{awb,scooper,zoran}@cs.washington.edu

ABSTRACT
The design of games can be an unfortunately indirect en-
deavour: the designer’s objective may be to present the
player with a particular set of possible experiences, or play-
space, but what the designer actually creates (i.e. the game)
is instead an artifact intended to produce the desired play-
space only upon interaction. In this work we develop both
a general framework and specific implementation for pro-
viding a designer a way to reason about and edit a game
level’s playspace. Our system enables a designer to specify
edits to playspace properties using a small set of local play-
space edits and constraints. It then automatically (via op-
timization) produces a new level configuration that reflects
the desired playspace changes. We present results from our
system demonstrating the usefulness of our approach. This
work constitutes an initial step toward a fully-realized play-
space level design tool.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems – Games; K.8.0 [Personal Computing]: General
– Games

Keywords
Games, level design, AI-assisted design, covariance matrix
adaptation

1. INTRODUCTION
The indirection inherent in game design has expensive con-
sequences. Verifying that a game artifact corresponds to
the intended playspace can consume considerable resources
in the form of manual testing, redesigning, etc. A tool that
enables game designers to analyze and modify their games
at the level of play possibilities instead of the literal ele-
ments of the game (the location of platforms and numerical
parameters) would give them direct access to the space they
are trying to design. This, in turn, could make it easier to
craft high quality games.

We envision such a tool being employed in an early phase
of the level-design process where it could give the designer
high-level feedback prior to more costly forms of analysis.
It would visualize a level’s playspace in a way that would
allow the designer to immediately glean useful properties,
and would facilitate sophisticated edits to the playspace it-
self. These edits would be automatically translated into the
necessary changes to the underlying level. In this context,
we informally define playspace to consist of the the possible
sequences of play. This includes the game state at each step
and the properties of the transitions between those game
states such as difficulty, risk, and importance to the larger
space (e.g. a certain transition may be a prerequisite for
many states).

This work is a first step towards realizing this kind of tool for
levels of 2D platforming games. We use graph-based level
analysis from our previous work [1] to generate a graph-
based representation of a game level that visually summa-
rizes some properties of the level’s playspace. The main
contribution of this work is a prototype system that auto-
matically alters a level configuration (e.g. the position of
platforms) in order to minimize an objective function over
the graph-based playspace summary. The specific edits this
work demonstrates are the following: (1) add a transition
not present in the original level. (2) Remove a transition
that exists in the original level. (3) Adjust the density, or
“thickness,” of an existing transition, such that is may be
“thicker” or “thinner” than before.

As with our previous work, we present the result of this
work as applied to a 2D platforming game called Treefrog
Treasure, a game developed by the Center for Game Science
at the University of Washington1. The player controls a frog
that sticks to the surfaces of the level (walls and floating
platforms). The frog does not run or walk, but traverses
levels via a series of parabolic jumps. The objective in each
level is to reach a goal location marked by a golden bug.
Figure 1 shows Treefrog Treasure in action.

The remainder of this paper is organized as follows. We first
discuss related work in automating game design using play-
space properties. We then give a brief overview of our previ-
ous work in generating graph-based representations. Then,
we lay out the details of our playspace edits and present ex-
amples demonstrating our results. Finally, we conclude with
discussion and future work.

1www.centerforgamescience.org/site/games/treefrog

Figure 1: In this simplistic Treefrog Treasure level,
the frog (player) begins in the lower left corner and
must reach the golden bug in upper right corner
to complete the level. The player controls the frog
using the mouse, clicking to make it jump.

2. RELATED WORK
Substantial previous work has dealt with automating parts
of game design using playspace properties. When focusing
on game levels in particular, there are three broad categories.

The first category is systems that generate levels from scratch
using playspace properties. There have been a variety of
approaches and methodologies in this category. Examples
include using a model of challenge-based fun to guide the
evolution of 2D platformer game levels [7] and using answer
set programming to generate puzzle game levels that obey
hard constraint [4]Work in this category has produced very
powerful systems for level synthesis, but the lack of inter-
activity makes them less suited for iterative design than an
interactive approach for two reasons. First, if a system can
display to the user the possible solutions it considers, it can
help the user understand how the system is searching and
what possibilities it may have failed to search fully. Second,
an interactive system allows the user to reuse their best ideas
from the previous cycle in the next iteration.

The second category covers systems that support interac-
tive editing of levels themselves without any notions of play-
space. Examples in this category like the editor for the Unity
game enginefocus on seamlessly transitioning from editing a
level to playing it and back. This is necessary as such con-
text switches are need to verify even small design changes.
This approach works to resolve the burden of manual testing
without attempting to solve it.

We place our work in the third category: systems that enable
interactive editing of playspace. A system called Tanagra
allows the generation of 2D platformer levels with respect
to user-specified playspace constraints [6]. Tanagra uses a
rhythm-based approach, dividing a level into “beats” and
letting the designer pin level properties for each beat, such
as the position of the platform or the presence of an enemy.
The system then automatically shapes the rest of the level
to remain traversable from left to right. Our system differs
from Tanagra in several ways. First, the graph represen-
tation that we base our system on is a more general repre-
sentation of playspace than the rhythm-based representation
used by Tanagra, as it is not particular to platformers or left
to right traversal. Due to this, the space of constraints that
our framework makes possible is also more general than the
constraints Tanagra supports. Our system, however, does

not support standard level editing tasks in addition to play-
space editing (as Tanagra does), instead focusing solely on
editing properties uniquely expressible in playspace.

3. GAME LEVELS AS GRAPHS
The technique described in our previous work [1] for gener-
ating graph-based representations of game levels serves as a
basis for the tool presented in this work. The details of this
method can be found in the original paper. For complete-
ness, we will give a brief overview of the relevant compo-
nents in this section, as well as highlight the ways in which
we changed our previous approach to better to better suit
this work.

Like [1], we begin by exploring the level using a probabilis-
tic search algorithm, namely the Rapidly-Exploring Random
Tree (RRT) algorithm [3]. In our system, we use the RRT
implementation available in the Open Motion Planning Li-
brary[8]. This algorithm generates a graph with thousands
of states which we then cluster to provide a streamlined rep-
resentation of the level’s playspace.

3.1 Rapidly-Exploring Random Trees
Initially, the algorithm begins with just the player’s initial
state in the tree. It then iteratively expands the tree, adding
new states by taking random actions from existing states al-
ready in the tree. Each iteration consists of choosing a goal
state uniformly at random from the space of all possible
states (i.e. a point anywhere in the level), and then taking a
random action from the state in the tree closest to this ran-
dom goal state. This algorithm requires three game-specific
components. (1) A definition of a game state must be pro-
vided, since that is what is stored at each node of the tree.
(2) To be able to choose the state in the tree “closest” to a
random goal state, the algorithm needs a function to com-
pute the “distance” between two game states. (3) To add
new states to the tree, a function that, given a current state
and an action, produces the resulting state is required.

We define each of these components for Treefrog Treasure.
The game statespace is defined as the the frog’s position and
orientation bounded by the size of the level. The distance
between two states is simply the euclidean distance between
the frog positions. In our original work, a function to gener-
ate successor states was provided by setting the game itself
up as an “oracle” where the full game simulation and logic
would be employed to compute the next state. This previous
approach proved too slow for this work, so we instead com-
pute an analytic solution. Since the frog jumps in parabolic
arcs, we simply solve for the intersection of the frog’s path
with the level geometry. This method is significantly faster
and more stable, allowing thousands of simulated actions
per second. Figure 2a shows a visualization of a tree for a
simple Treefrog level.

3.2 Clustering
To facilitate a cleaner interface for playspace editing, we
cluster the original tree produced by the RRT algorithm.
The method of clustering is another game-specific compo-
nent of this pipeline. For this work, we employ a new method
of clustering that is both simpler and more effective than
the clustering in our original work. Since the Treefrog levels

Figure 2: These are visualizations of the tree pro-
duced by the RRT algorithm (a) and the corre-
sponding clustering (b) for a simple level from the
game Treefrog Treasure. The direction of edges is
indicated by transparency. Edges are transparent
by their source and opaque by their target. Also,
the edges show just the connectivity of the graph,
not the actual paths the frog took.

we are considering contain only polygonal shapes, we create
a single cluster for each surface that contains at least one
node of the tree. A surface is defined as a line segment that
constitutes a side of a level element. All the nodes on a par-
ticular surface are put into the same cluster. This method
of clustering is orders of magnitude faster than our previous
method (a few seconds instead of 5-20 minutes), and also
results in a cleaner-looking clustered graph. Multiple con-
fusing and redundant clusters no longer appear on the same
surface.

The edges in the clustered graph are defined in terms of the
edges in the original RRT graph. Specifically, there is an
edge from one cluster to another if there is an edge from a
node in the first cluster to a node in the second cluster. The
weight, or “thickness,” of an edge is determined by the num-
ber of RRT edges that connect the two clusters.The weight
of an edge is related to the precision required for the player
to transition from nodes in the source cluster to nodes in the
target cluster. The weight corresponds to the frequency of
transitions that occurred between nodes in the two clusters
during the exploration. Since actions are generated ran-
domly, if only a small number of transitions occurred, then
it is likely the target cluster can only be reached from a
small set of states, or a relatively precise action is required
to reach it, or both. The player may have a harder time ac-
complishing transitions represented by “thin” edges because
the conditions for making the transitions these edges repre-
sent are very precise. Figure 2b shows a visualization of a
clustered graph for a simple Treefrog level.

4. EDITING PLAYSPACE
Given a graph-based representation of a level, we present
a general framework for automated redesign of playspace

properties. The core of this framework is a minimization
of an objective function, subject to some set of constraints.
The minimization is defined as

min
C

αEg + βEo

where C is a level configuration, Eg and Eo are energy func-
tions for the graph and the elements of the level, respectively,
and α and β are weights. Eg, Eo, and C will have particular
definitions for different games and/or for different kinds of
playspace edits. Constraints are specified over properties of
the level configuration C.

To demonstrate the validity of our framework, we have im-
plemented a system that allows for three types of local play-
space edits over the edges of a clustered graph. Each type
of edit involves a specifying the desired thickness, T , of an
edge e in the graph. Our definition of Eg measures how well
a candidate level configuration achieves a thickness of T for
edge e. The three types of edits are as follows.

• Add a new edge e between clusters where one does not
exist in the current clustered graph, also specifying the
target thickness T of the new edge.

• Remove an existing edge e between clusters, which cor-
responds to a target thickness of T = 0.

• Adjust the thickness of an existing edge e by specifying
a new target thickness T .

As these types of edits all relate to a single edge, they are
all local edits to the clustered graph. We chose to focus on
local edits in this work because in trying to demonstrate the
validity of a new approach, it seemed prudent to focus on
the most basic of graph-based playspace edits (i.e. the ma-
nipulation of single edges), the understanding of which will
hopefully lead to useful implementations of global playspace
edits. It is worth noting, however, that our framework lends
itself equally well to both local and global edits.

Our system also incorporates constraints, both user-specified
and built-in. The user can designate edges to “preserve,”
during the optimization (i.e. changes to the level that would
break the edge are not allowed). There are built-in con-
straints to prevent level elements from moving outside the
boundaries of the level, and prevent platforms being made
too narrow (an aesthetic quality). The UI and formalization
for these constraints are described below.

The remainder of this section will lay out the details of our
system for making playspace edits. First, we’ll describe our
user interface, and the ways it allows the user to parame-
terize the subsequent optimization. Next, we’ll detail the
resampling that is performed to support both the user in-
terface and the evaluation of Eg. Finally, we will discuss the
optimization itself, including our definitions of Eg and Eo.

4.1 Level Design UI
Even given the limited set of playspace edits we are consid-
ering in this work, there remain many different ways both to
specify and parameterize those edits. To this end, we have
implemented a small set of naturally visual parameters, but
emphasize that our framework places few restrictions on the
specifics of the editing interface. The contribution of this
work is not the particular UI we have implemented but the
underlying system it allows access to.

An edit begins with the user indicating the edge of interest
e. This is done in two different ways, depending on the
nature of the edit. If the user wants to remove or adjust
an existing edge e, they simply click on it to select it. If
the user wants to add an edge, they first click on the source
cluster, followed by the destination cluster, thus defining
(and selecting) a new edge e. After e is selected, the system
performs a “dense resampling” of the surface where e starts.
The user then chooses a value for T , the desired thickness,
in the context of this resampling.

In addition to specifying T , the UI also allows the user to
determine the degrees of freedom D. In our current im-
plementation, this consists of selecting (via check box or
clicking) which level elements are movable during the op-
timization. That is, the user decides which platforms are
allowed to change as the system tries to find a new level
configuration. Each platform is given degrees of freedom
based on its type. Rectangular platforms have four degrees
of freedom, one for each surface. This means each surface
can move along its axis independently. The goal bug is given
just two degrees of freedom: its x-y position. The combina-
tion of the degrees of freedom of the chosen level elements
give us the total degrees of freedom D.

The final part of the level design UI allows the user to put
constraints on the optimization by way of designating edges
to “preserve.” The user clicks a button to enter a “preserve-
edges mode,” and then clicks on the edges they wish to pre-
serve. The system passes the set of preserved edges P to the
optimization.

4.1.1 Dense Resampling
For the purposes of quantifying the current thickness of e
as well as evaluating the thickness of e given some change
to the level, the node edges from the original RRT graph
are not sufficient. For any given e, the number of RRT
edges that constitute it may be small (as few as one or two),
thus evaluating Eg based solely on those edges is potentially
fragile or inaccurate. In our current system, it is computa-
tionally infeasible to evaluate Eg by recomputing the entire
RRT graph (doing so takes about one minute). Hence, some
other source of data about the thickness of e should be used
in the context of the optimization.

Our solution is to do a dense resampling of the surface where
e starts. This is accomplished by sampling n new player
actions where n is 10 times the length of the surface (up to
a maximum of 2000 for performance reasons). We define this
set of new actions to be A and a ∈ A to be an individual new
action. These actions are sampled from a distribution biased
to make it more likely that they hit the surface where e ends.
The fraction of a ∈ A that succeed in reaching the surface

of the target cluster is then reported as the quantitative
thickness Te of e and all a ∈ A are displayed to the user (see
Figure 3). This can be expressed mathematically as

Te(C,A) =

∑
a∈A a(C)

n

where C is a level configuration and given the position of
level elements in C

a(C) =

{
1 if a hits the surface of the target cluster

0 if a does not

The user then chooses a value for the desired thickness T ,
since they can now choose that value in context (i.e. choose
it relative to Te). A is passed along to the optimization, and
is used to recompute Te for candidate level configurations.

The concept of dense resampling is not game-specific. We
perform dense resampling on a surface because in our imple-
mentation on Treefrog Treasure, each cluster corresponds to
a surface. If applied to a different game, the system might
need an alternative definition of the subset of game states
relevant to a cluster. In any case, the general concept still
stands that a dense resampling should be conducted on the
space of game states associated with the cluster where e
starts.

Figure 3: A dense resampling for a clustered edge
chosen by the user. The red and green lines show
the path of the frog as a result of each sampled ac-
tion. The green lines are those that hit the target
surface and the red lines are those that did not. The
platforms are blue with labels to make them distin-
guishable when the user is determining the degrees
of freedom. When a platform is designated as mov-
able, it turns yellow.

4.2 Optimization
Our optimization takes as input the current level configura-
tion C, the desired thickness T , the actions from the dense
resampling A, the preserved edges P , the degrees of freedom
D, and the current type of edit, whether its remove, add, or
adjust. It returns to the user a new level configuration C′.

4.2.1 Algorithm
To perform the optimization and generate C′, we use Co-
variance Matrix Adaptation Evolution Strategy (CMA-ES).
Originally described in [2], CMA-ES is an evolutionary algo-
rithm that uses covariance matrix adaptation to update the
covariance matrix for the distribution it uses when sampling

new candidate solutions. CMA-ES has several nice proper-
ties that make it appropriate for our system. (1) The search
space of level configurations is quite rugged and CMA-ES
is well-suited for rugged search landscapes. (2) CMA-ES
requires little in the way of parameter tuning, which is con-
venient since we would like a single optimization algorithm
for multiple types of edits. (3) Since we are only considering
transformations to level elements (as opposed to adding or
removing elements entirely), our searches are over a fixed
number of dimensions, which is appropriate for CMA-ES.

4.2.2 Representation
We represent a candidate solution c (a candidate solution is
a representation within CMA-ES, different from a candidate
level configuration) as a set of floats, where each ci is the
change in position for one of the degrees of the freedom,
di ∈ D, selected by the user. For example, if the user set
one platform and the goal bug to be movable, then each c
would consist of six floats; the first four would be the changes
in position for each of the four sides of the platform, and the
last two would be the changes in x and y position of the goal
bug. The deltas ci ∈ c are applied to the corresponding level
elements in C to produce C′, which is then evaluated by the
fitness function to assign a fitness value to c.

4.2.3 Constraints
Given a set of preserved clustered edges P , we define p to
be the set of RRT graph edges that constitute these pre-
served edges and pi ∈ p be the individual RRT graph edges.
Since each RRT graph edge is associated with a particular
player action, we can evaluate pi(C) in the same way as
a(C). Thus, the constraint imposed on the optimization by
preserved edges is: for each pi ∈ p, pi(C) = 1. That is, no
changes to the level are allowed that would cause any RRT
graph edge that is part of one of the preserved clustered
edges to no longer hit its target surface.

The built-in constraints are as follows. (1) We prevent plat-
forms from being too narrow. Let k be a platform, and wk

and hk be the width and height, respectively, of that plat-
form. Then, for all k, wk > 10 and hk > 10 (enforcing a
minimum size of 10 pixels). (2) We don’t allow level ele-
ments to move outside the boundaries of the level. Let l be
a level element and lx and ly be the x- and y-positions of l.
Also, let bx and by be the maximum x- and y-values allowed
by the level boundaries. Then, for all l, 0 < lx < bx and
0 < ly < by.

Since our optimization algorithm is not capable of enforcing
hard constraints, we convert these hard constraints into soft
constraints that are evaluated as penalties assigned to the
fitness function. We set the values of the penalties such that
they overwhelm the other components of the fitness function.
The exception is the penalty for platforms that are too thin,
which is less severe since it a mostly aesthetic concern. The
penalty for platforms outside the level boundaries is assessed
in a binary manner (either it is applied or it isn’t). The
penalties for not preserving edges and thin platforms are
assessed incrementally.

4.2.4 Fitness
The fitness function follows the minimization described above.
Eg is defined to be how close C′ is to achieving a thickness

of T for e. Eo is defined to be how different C′ is from C.

Specifically, the fitness of a level configuration C′ produced
by applying c to C is expressed as

f(C′, c) = αEg + βEo + penalties

f(C′, c) = α
(
Te(C′, A)− T

)2
+ β(

|D|∑
i=0

c2i) + penalties

where penalties encompasses the the penalties for violating
the three constraints described above. Recall that Te(C′, A)
is the thickness of edge e for level configuration C′ given a
dense resampling A. Note that the second term (the sum
over ci) is the sum of the squared deltas for each degree of
freedom in D. Hence, the optimization attempts to achieve
the desired thickness while changing the level as little as
possible (and avoiding violating the constraints).

We set α and β such that the optimization prioritizes match-
ing the target thickness over minimizing changes to the level
(i.e. the first term has more effect than the second term).
We also use different α and β for different tasks, namely
using a larger α for remove edits than for add or adjust ed-
its. This is because a remove edit does not accomplish its
goal unless there are no remaining connections whatsoever,
whereas the result of an add or adjust edit is acceptable if
it gets close to the target thickness.

4.3 Recomputation
Once the optimization is complete and a new level config-
uration has been generated, the last remaining task is to
integrate the existing graph with the new configuration. To
accomplish this we use the same local recomputation tech-
nique described in the previous work [1] with a few mod-
ifications. Given the knowledge of which elements of the
level were changed, the process is as follows. First, we iden-
tify the set of directly affected clusters, which is simply the
clusters located on those elements that were changed. Next,
we recompute the results of all the RRT edges coming into
and going out of nodes in the affected clusters, updating
the graph as necessary. We then remove any nodes that
no longer have any incoming edges edge, in case they have
become unreachable due to the changes.

As a final step, we compute new actions sampled from nodes
throughout the level in order to discover new connections
that have been made possible by the changes. The proba-
bility that a new action is sampled from a particular node
is proportional to that node’s proximity to changed level el-
ements. After the action is computed, the new action and
state are only added to the graph if together they introduce
a new edge in the clustered graph. This prevents the recom-
putation from vastly increasing the number of states in the
graph (which is harmful to both performance and the visu-
alization) and is acceptable because representing the correct
reachability via the graph is more important than ensuring
the edges of the graph are precisely the correct weight.

5. RESULTS
As with our previous work, we implemented our interac-
tive system on top of an existing level editor for Treefrog
Treasure. The level editor, built in ActionScript, displays a

schematic view (i.e. monochromatic platforms and walls) of
the level currently being edited. Our graph for the level is
overlaid on top, physically placing it in the context of the
level. Using the level design UI described above, the user
specifies an edit and its parameters. This information is then
sent to a Python server, which runs CMA-ES. The server
sends back the best candidate solution from each generation
(once every 1-2 seconds), which the level editor displays, giv-
ing the user feedback on how the search is progressing. The
optimization to produce the new level configurations took
between 40 seconds to four minutes, depending on the num-
ber of degrees of freedom and the number of actions in the
dense resampling. In this section we present four example
uses of our system, and sketch out how those examples fit
into a level design scenario.

The example images have been annotated to make clear
what is happening. There is unfortunately not space here to
include images of all stages of the UI, so annotations allow
for both brevity and clarity. All platforms in the level are
marked with blue rectangles to help them stand out. Plat-
forms designated as movable for the optimization are sur-
rounded by a yellow outline. The chosen edge being edited
is highlighted in red, and any edges designated as preserved
are highlighted in purple. The images within each figure
show the state of the level before and after each edit, pro-
ceeding chronologically from top to bottom.

In Figure 4, the designer has created a level where the player
must jump through a narrow gap to get from the left side of
the level to the right side. The edge connecting the left and
right platforms looks too thin, however, so the designer sets
it to be thicker. To prevent the optimization from making
the left platform unreachable, the designer designates the
edge from the floor to the top of the left platform to be pre-
served. Lastly, the designer sets the left and right platforms
to be movable.

Figure 5 starts with a level where the designer has laid out
three platforms with the intention of each providing a route
to the goal bug in the center. Unfortunately, only the mid-
dle platform is close enough, requiring two add edits in a
row. The designer adds an edge first from the top of the left
platform to the goal, and then from the top of the right plat-
form, designating existing connections between other plat-
forms and the goal to be preserved. The designer also des-
ignates the connection from the ground to the top of the
middle platform as preserved, since, unlike the left and right
platforms, it is not reachable from the walls. At each step,
the designer allows the goal, the platform they wish to con-
nect to the goal and all platforms currently connected to the
goal to move.

For Figure 6, the designer has a level with three ways to get
to the goal, but they don’t like the one from the low, middle
platform. They want to remove it, but also preserve the
paths to the goal they like, so they perform a remove edit
on the offending edge while also designating the other paths
to the goal to be preserved. Since the designer doesn’t have
a firm idea of which platforms to move to best accomplish
this, they set all the platforms to be movable.

Figure 7 shows a sequence of three adjust edits. In the orig-

Figure 4: A simple adjust edit where the edge is
thickened. The system moves the top of the left
platform up as much as possible without severing
the edge from the floor, which thickens the edge
from it to the right platform considerably.

inal level, all the platforms are the same size, and about
the same distance apart. The designer decides that this is
boring, and that it needs some spicing up. To make this hap-
pen, the designer first sets the thickness of the edge between
the top of the first and the top of the second platform to
be thinner, allowing just the second platform to move. The
designer then repeats this pattern with the following two
edges, making the edge from the second platform to third
platform thicker and the edge from the third platform to the
fourth platform thinner, always only allowing the destina-
tion platform to move.

6. DISCUSSION
We believe we have demonstrated the potential of our system
to provide game designers with a way to edit local proper-
ties of a level’s playspace. The framework that we present
here is very general. Any constraint that can be specified
over a graph representation and then evaluated as part of an
objective function can be incorporated into our system. To
this point, we have also demonstrated that a graph-based
representation of a level can function as an effective repre-
sentation of playspace in the context of a playspace editing
system. This, along with the generality of generating graph-
based representations as explained in our previous work,
suggests our approach could be applied to a variety of games.

The implementation presented in this work has several limi-
tations. (1) The only types of level elements we consider are

Figure 5: A series of two add edits with the results
arranged chronologically from top to bottom. The
final configuration allows the goal to be reached from
each of the three platforms. As a result, the left
and right platforms are no longer reachable from
the ground, but fortunately they remain reachable
from the adjacent walls (not visible in these images).

rectangles and the goal bug, which is modeled as a rectangle
of fixed size. We chose to do this to simplify our implemen-
tation in both the computation of player actions and the
dimensionality of the optimization. It is not, however, a re-
quirement, and our system could certainly be extended to
accommodate other types of level elements. (2) We don’t
support modifying size of level or level boundaries in any
way as part of the optimization. We view these modifi-
cations as global changes, and this work focuses on local
changes. Also, modifying the level boundaries can result in
an ill-formed level with holes that a player can jump through
and leave the level entirely, and we chose not to incorporate
a check for this into the fitness function. (3) We don’t allow
the user to add an edge from an existing cluster to a surface
that has no cluster (i.e. that is not currently reachable in
any way). Again, this is not a fundamental limitation in
any way, but would require the system to be able to “snap”
a user’s target location to a valid position actually on the
intended surface, and no such functionality is implemented
at this time.

Figure 6: A remove edit in which all the platforms in
the level were allowed to move. In the final configu-
ration, the level has been reshaped in an interesting
way that also satisfies all the constraints.

These kind of limitations are acceptable, as the purpose of
this work is to demonstrate playspace editing and this can be
done on a subset of game features. We adhere to the general
principle that it is useful to show how our approach supports
additional automated intelligence in the design process even
given the simplifications we have made [5].

It is the case that our system does not produce good re-
sults in all cases, a fact that should be unsurprising, partic-
ularly for a prototype system like ours. Sometimes a new
level configuration might be uninteresting, or unplayable,
or simply not satisfy the specified constraints. This can be
the fault of the user, if the constraints or degrees of free-
dom are poorly chosen, but it can also be the result of the
optimization finding some undesirable way of meeting the
constraints. For example, Figure 8 shows the result of the
same task as Figure 4, but where all four platforms were
allowed to move. The system satisfied the constraints, but
in a way that doesn’t make sense in the context of the full
game mechanics. Further refinement of the fitness function
could eliminate some of these cases.

7. CONCLUSIONS AND FUTURE WORK
The framework and system presented here are initial steps
towards realizing a tool that enables many kinds of sophis-
ticated edits to a level’s playspace. A great deal of future
work remains. Applying our system to an additional game,
preferably one with notable differences from Treefrog Trea-
sure, would reinforce the generality of our work. It would
also be exciting to expand the optimization to support a
search space of varying dimensions. This would allow it

Figure 7: A series of three adjust edits. To conserve
space, the annotations for all three edits are shown
together in the top image and the cumulative result
is shown in the bottom image. After the three edits,
the designer has a level with varied platforms pre-
senting a series of varied jumps. Automating this
kind of “add variety” series of edits as a single op-
eration applied to a path is an exciting direction for
future work.

Figure 8: The same edit as Figure 4, except all
four platforms were allowed to move. The system
achieves the target thickness by placing both the
start and target surfaces inside a blocking platform.
This is possible because our analytic computation of
the frog’s parabolic jumps only checks for intersec-
tion, not the type of empty space the frog travels
through (i.e. inside versus outside a level element).

to consider level modifications that alter the dimensionality
of the search, such as adding or removing platforms. This
might be accomplished by simply running a fixed dimension
algorithm like CMA-ES multiple times, but more likely will
require a new algorithm such as Reversible Jump Markov
chain Monte Carlo.

An obvious and promising avenue for future work is the ad-
dition of global playspace edits or interesting combinations
of local playspace edits. This could include edits such as
the ability to ensure a level has at least three distinct paths
to completion all of approximately the same thickness, or
ensure a level’s distinct paths to completion are sufficiently
different. As mentioned in Figure 7, local edits could be
batched together as a single unit to accomplish a task such
as making an entire path thinner or thicker.

Despite the limits of our current implementation, we believe
it demonstrates the validity of our general framework for
editing playspace properties and suggests intriguing direc-
tions for future work in this space.

8. ACKNOWLEDGEMENTS
We would like to thank the creators of Treefrog Treasure:
Yun-En Liu, Tim Pavlik, Seth Cooper, Marianne Lee, Bar-
bara Krug, François Boucher-Genesse, Fernando Labarthe,
Eleanor O’Rourke, Erik Andersen, Brian Britigan, and Atanas
Kirilov. This work was supported by the University of Wash-
ington Center for Game Science, DARPA grant FA8750-11-
2-0102, and the Bill and Melinda Gates Foundation.

9. REFERENCES
[1] A. Bauer and Z. Popović. RRT-based game level

analysis, visualization, and visual refinement. In
Proceedings of the Conference on Artificial Intelligence
and Interactive Digital Entertainment, 2012.

[2] N. Hansen and A. Ostermeier. Adapting arbitrary
normal mutation distributions in evolution strategies:
the covariance matrix adaptation. In Proceedings of the
IEEE Conference on Evolutionary Computation, 1996.

[3] S. M. LaValle and J. J. Kuffner. Randomized
Kinodynamic Planning. The International Journal of
Robotics Research, 2001.

[4] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović.
A case study of expressively constrainable level design
automation tools for a puzzle game. In Proceedings of
the Conference on Foundations of Digital Games, 2012.

[5] A. M. Smith and M. Mateas. Computational
caricatures: Probing the game design process with ai.
In Proceedings of the Workshop on Artificial
Intelligence in the Game Design Process, 2011.

[6] G. Smith, J. Whitehead, and M. Mateas. Tanagra:
Reactive planning and constraint solving for
mixed-initiative level design. IEEE Transactions on
Computational Intelligence and AI in Games, 2011.

[7] N. Sorenson and P. Pasquier. The Evolution of Fun :
Automatic Level Design through Challenge Modeling.
In Proceedings of the Conference on Computational
Creativity, 2010.

[8] I. A. Sucan, M. Moll, and L. E. Kavraki. The open
motion planning library. IEEE Robotics & Automation
Magazine, 2012.

