
Dragon Architect: Open Design Problems for Guided
Learning in a Creative Computational Thinking Sandbox Game

Aaron Bauer
awb@cs.washington.edu

Paul G. Allen School of Computer
Science and Engineering
University of Washington

Eric Butler
edbutler@cs.washington.edu

Paul G. Allen School of Computer
Science and Engineering
University of Washington

Zoran Popović
zoran@cs.washington.edu

Paul G. Allen School of Computer
Science and Engineering
University of Washington

ABSTRACT
Educational games have a potentially signi�cant role to play in the
increasing e�orts to expand access to computer science education.
Computational thinking is an area of particular interest, including
the development of problem-solving strategies like divide and con-
quer. Existing games designed to teach computational thinking
generally consist of either open-ended exploration with li�le direct
guidance or a linear series of puzzles with lots of direct guidance,
but li�le exploration. Educational research indicates that the most
e�ective approach may be a hybrid of these two structures. We
present Dragon Architect, an educational computational thinking
game, and use it as context for a discussion of key open problems
in the design of games to teach computational thinking. �ese
problems include how to directly teach computational thinking
strategies, how to achieve a balance between exploration and direct
guidance, and how to incorporate engaging social features. We also
discuss several important design challenges we have encountered
during the design of Dragon Architect. We contend the problems
we describe are relevant to anyone making educational games or
systems that need to teach complex concepts and skills.

CCS CONCEPTS
•Applied computing→ Interactive learning environments;

KEYWORDS
game-based learning; computational thinking; programming edu-
cation

ACM Reference format:
Aaron Bauer, Eric Butler, and Zoran Popović. 2017. Dragon Architect: Open
Design Problems for Guided
Learning in a Creative Computational �inking Sandbox Game. In Proceed-
ings of FDG’17, Hyannis, MA, USA, August 14-17, 2017, 7 pages.
DOI: 10.1145/3102071.3102106

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
FDG’17, Hyannis, MA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5319-9/17/08. . .$15.00
DOI: 10.1145/3102071.3102106

1 INTRODUCTION
�e past few years have seen increasing e�orts to broaden the reach
of computer science education and make it available, and accessi-
ble, to more students in more places. Educational games have a
potentially powerful and exciting role to play in this expansion.
Game environments can provide an educational se�ing possess-
ing many a�ributes known to support be�er learning outcomes,
such as varied practice [11], immediate feedback [22], intrinsically
motivating goals [14], and an engaging social context [5]. Well-
designed, carefully sca�olded educational games that leverage these
a�ributes could help address the current lack of wide-spread access
to computer science education [18].

Existing educational programming environments and games
employ myriad approaches to incorporating and teaching compu-
tational concepts [21, 34]. Despite this variation, the structure of
these systems generally falls into one of two groups: (1) an open-
ended se�ing with li�le to no direct guidance where players are
intended to learn via exploration and from instructors or other
members of the social community, or (2) a linear series of puzzles
or exercises with substantial direct guidance, but li�le in the way of
exploration of social interaction. Both structures have bene�ts, but
the educational literature suggests that a hybrid structure, one that
combines direct guidance with creative, player-driven exploration,
may be the most e�ective [25, 28]. In this work, we explore some
key open problems and design questions that arise when applying
this hybrid structure to the computer science domain, using the
context of the design of our educational game with this hybrid
structure, Dragon Architect.

Computational thinking has received signi�cant a�ention in the
context of expanding access to computer science as a crucial area
of conceptual knowledge. �e literature contains numerous de�-
nitions of computational thinking, and though no consensus has
been reached [13], the use of certain problem-solving strategies, or
computational practices [4], has emerged as a central theme. �ese
strategies include skills such as “being incremental and iterative” or
“using abstraction and modularization.” How to directly teach such
skills in an educational game is an open problem, and we discuss
this question and how it impacts the design of Dragon Architect.

Our contributions are as follows: we survey research on teaching
computational thinking in so�ware systems and describe the open
problems in that space. We then survey and discuss related research
problems in game-based learning. We are currently creating Dragon
Architect, an educational, creative sandbox game designed to inves-
tigate these questions. We describe design trade-o�s and decisions
in Dragon Architect, focusing on a few unsolved design obstacles:
how to combine open-ended sandbox games with direct guidance,

FDG’17, August 14-17, 2017, Hyannis, MA, USA Aaron Bauer, Eric Butler, and Zoran Popović

and how to encourage a social environment in a programming game.
�is paper focuses on the survey and discussion of open research
problems in teaching computational thinking through games, and
the design challenges and trade-o�s encountered when tackling
these problems, rather than our speci�c game per se. We believe the
problems we describe are relevant to anyone making educational
games or systems that need to teach complex concepts and skills.

2 GAME DESCRIPTION
Before we discuss open research problems and design challenges,
we describe basic information about Dragon Architect to provide
context for the discussion. In Dragon Architect, played in a web
browser, players write code to control a dragon that builds 3D
structures in a block world. Similar to other programming games,
the user interface is separated into two parts: an area where the
player assembles code and a visualization of the 3D environment
their code a�ects (see Figure 2). �e game uses the three.js library for
the 3D environment and the Blockly drag-and-drop programming
library for inputing code.

Players use a visual language made up of code blocks that snap
together to form programs. �e player can use these blocks to
move the dragon in three dimensions and direct it to place and
remove cubes of various colors. In addition to blocks that control
the dragon directly, players can use de�nite loops and procedures
(see Figure 1). Given that syntax can be an obstacle for those new to
programming [35], we chose a visual language given the evidence
they are helpful to novices [37].

As players progress through the game, they alternate between
short sequences of puzzles (1–4 puzzles long) with a speci�c goal
and restricted set of code blocks and an open-ended sandbox. �e
game begins with puzzles that introduce the idea of assembling
and running code, as well as the code blocks for moving the dragon
and placing cubes. A�er that, the player can creatively experiment
and build in the sandbox and complete other puzzle sequences to
make more code blocks available, switching between sandbox and
puzzles at any time. In this way, the language the player uses to
control the dragon gradually expands as the player advances.

�e popularity and uniquely broad appeal of Minecra� (Mo-
jang, 2011) motivated our use of a 3D grid world in which the
player’s programs could place cubes. Minecra� embodies many
desirable a�ributes including creative, player-directed construction
and exploration and a compelling social context delivered via a
multiplayer mode. Our aim is to retain these a�ributes while intro-
ducing the additional structure necessary to best support learning.
Using Minecra� as an inspiration also suggests natural future ex-
tensions to our game such as exploration, more complex interaction
with the environment, and players working together in a shared
world. Our playtests with Dragon Architect have supported the
appeal of programming a dragon in a Minecra�-like world with
younger players of all genders. Common sandbox activities have
included making the dragon travel very long distances, building
big and impressive towers, and spelling one’s name out of cubes.

3 RESEARCH QUESTIONS
Our primary goal for Dragon Architect is to investigate questions in
computer science education and game-based learning. Speci�cally,

Figure 1: �e programming elements available inDragonAr-
chitect, which include moving the dragon, placing blocks,
de�nite loops, and procedure de�nitions.

we are interested in exploring how to teach computational thinking
skills and problem-solving strategies. Investigating these questions
requires answers to larger research questions on how to e�ectively
structure educational game. Open-ended games and systems typ-
ically perform poorly at teaching complex concepts without in-
structors or other outside help, but linear, direct-guidance-based
games and systems don’t o�er the engaging creative and social
experiences that can be found in more open-ended se�ings. In this
section, we describe these research problems in detail along with
related design trade-o�s.

3.1 Teaching Computational �inking
A major goal of our project is to explore methods of teaching com-
putational thinking skills. Many have studied how to increase the
presence and e�ectiveness of computational thinking in computer
science education (and education in general) (e.g., Barr and Stephen-
son [2]), and others have developed games to teach these ideas (e.g.,
[20]). A recent review of the literature on teaching computational
thinking found that additional research is needed [26].

Dragon Architect’s design is structured to encourage and require
use of computational thinking skills. Like many programming
games, we force the player to automate tasks that they are used
to performing manually (in this case, the construction of 3D block
structures). As the player sets more sophisticated goals, modular-
ity becomes important (e.g., pu�ing the building of a wall into a
procedure) to keep the visual programming feasible.

As we cannot expect players to learn such complex skills simply
by playing in an environment that requires those skills [28], we
must address how to directly teach computational thinking skills.
A core component of computational thinking is the identi�cation
and application of problem-solving strategies. A great deal of re-
cent education research suggests that “curricula can model such
strategies for students” and that appropriate guidance, which in
many cases consists of the capabilities a�orded by a suitable com-
putational environment, can “enable students to learn to use these

Dragon Architect: Open Design Problems for Guided
Learning in a Creative Computational Thinking Sandbox Game FDG’17, August 14-17, 2017, Hyannis, MA, USA

Figure 2: �e player assembles code to control the dragon on the le� side, and the game world is visualized on the right side.
Only a few di�erent code blocks are available to the player initially, and more are unlocked by completing additional puzzles.

strategies independently” [30]. Mayer and Wi�rock call a�ention
to the substantial evidence in the education literature for teach-
ing what they call domain-speci�c thinking skills and metacognitive
skills [29]. An example of the former is the ability to use a strat-
egy like divide and conquer, and the la�er would include knowing
when and where to employ that strategy. In both cases, Mayer and
Wi�rock describe studies (for non-computer science domains) that
have shown teaching these skills directly can improve learning and
performance. It is an open question whether this can be applied to
teaching computational thinking in a game.

One strategy we have focused on in Dragon Architect is divide
and conquer. Our initial a�empt to directly teach divide and conquer
is to lead the player though a top-down deconstruction of building
a large castle. �e player is presented with a single code block that
builds an entire castle, but discovers the construction has a number
of �aws. �e next several puzzles each decompose some part of the
�awed program in order to give the player a chance to repair it. For
example, to enable the player to give the castle the correct number
of walls and towers, the castle code block is split into a tower block
and a wall block that the player uses to write a corrected castle
procedure, as shown Figure 3. �is part of Dragon Architect needs
to be expanded and re�ned before it can be evaluated, and the larger
question merits further a�ention.

3.2 Structure of Learning Environment
3.2.1 Guided Discovery Learning. Teaching complex skills such

as computational thinking or programming though interactive so�-
ware is very challenging, and any e�ort to do so in a game naturally
leads to research questions about which structures are most e�ec-
tive. For example, some games are structured as a sandbox where
players discover the properties of the environment through largely
unguided exploration (e.g., Minecra�, SimCity (Maxis, 1989)), while
others provide a linear sequence of levels designed to teach the
player the relevant information (e.g., Portal (Valve, 2007)).

In terms of learning theory, the former is known as discovery
learning, in which learning takes place through exploration with
the object of study. Discovery learning typically has a motivational
advantage over a traditional teaching approach: directly exploring
and interacting with something can be substantially more engag-
ing than hearing someone talk about it. Furthermore, this allows
learning domains to be grounded in an application of interest to
the learner, creating meaning and intrinsic interest in developing
the desired skills. While the pure form of this approach can work
for simple learning domains, complex ones such as programming
or computational thinking cannot be taught through exploration
alone unless players have su�cient background knowledge [23].

�e recommended practice is to use guided discovery, in which
discovery learning is paired with some kind of external direct guid-
ance [28]. For example, in games, players might consult wikis or
ask friends to help them develop high-level skills. �is approach of
combining se�ings for discovery learning with guidance is a central
part of constructionism, a learning theory that proposes students
learn e�ectively by constructing things of social relevance in a
social context [19]. Scratch [27], which enables users to create inter-
active digital media projects such as stories and games, is among the
most popular of systems designed along constructionist principles.
Scratch’s open-ended creative environment allows player to pursue
meaningful creative projects, giving them motivation to learn the
skills required to do so. However, the tool cannot e�ectively teach
these skills in isolation; it is designed such that instructors or the
social community help teach new users.

On the other hand, more structured systems can more e�ectively
teach skills without external guidance by limiting player freedom.
Linear games such as Portal introduce concepts in a deliberate
ordering and pacing to allow players to develop the necessary skills.
Methods of direct instruction, such as classroom lectures, also fall
into this category. Online systems such as Code.org pair sequences
of puzzles with videos to explain and teach the concepts.

FDG’17, August 14-17, 2017, Hyannis, MA, USA Aaron Bauer, Eric Butler, and Zoran Popović

Figure 3: �e code required by a progression of levels demonstrating the strategy of divide and conquer. In A, the player uses
a single code block to build an entire castle. �en, in B, the player is given an empty FixedCastle procedure, which they must
�ll with the appropriate number of wall and tower blocks. Finally, in C, the player is given a completed FixedCastle procedure
and must �ll in the FixedTower procedure as shown. �e �nal completed castle is shown on the right.

Other games teach players by doing something in between.
Games in the Zelda series (e.g., �e Legend of Zelda: Ocarina of
Time (Nintendo, 1998)) contain a non-linear sequence of puzzles
and teach new mechanics by requiring the player demonstrate un-
derstanding of a new mechanic before they are allowed to progress.
Strategy games such as Crusader Kings II (Paradox Development
Studio, 2012) o�er a set of explicit tutorials the player may choose
to go through before beginning more open-ended play.

Both types of systems (open-ended vs. highly-structured) have
highly desirable bene�ts. �e open research problem we are inter-
ested in is how to create a hybrid model that best combines bene�ts
of both approaches, particularly in se�ings where we cannot rely
on an instructor. Our initial approach joins an open sandbox with
small sequences of puzzles that directly guide players. Our prelimi-
nary playtesting has shown this to be a promising approach, though
this encounters several design challenges. We discuss the details
and associated trade-o�s in Section 4.1. �e primary challenge with
direct guidance in an open-ended game is providing guidance at
the appropriate moment; e�ective games provide help on-demand
and just-in-time [10].

3.2.2 Social Environments. Social environments can be an e�ec-
tive way to provide guided discovery learning. Social communities
both create motivation to learn (to participate in the social group)
and guidance (by ge�ing help from the group). Scratch users, for
example, have shared millions of projects and even formed online
companies to tackle projects together [33]. Research using an online
programming environment called MOOSE Crossing [6] found that
a social context can support and motivate learning programming
in a shared environment [5]. �is work is supported by research
in behavioral and social sciences that indicates sharing and collab-
oration can improve learning [3]. Open-world multiplayer games
such as Minecra� and World of Warcra� (Blizzard, 2004) have been
used as a virtual classroom environment in schools [12]. Players on
the same Minecra� server are able to share their work, collaborate
with others, and help directly guide others.

Dragon Architect incorporates some project-sharing features
from Scratch: players can share what they build in the sandbox in a

communal gallery and browse, view and download others’ creations.
Supporting closer collaboration activities, such as pair program-
ming in Dragon Architect’s Minecra�-like world, could dramatically
enhance the social element of our game. �is presents several
design challenges, however, which we describe in Section 4.2.

4 OPEN DESIGN PROBLEMS
Dragon Architect’s design and research goals have led to several
tensions and di�culties. In this section we discuss cases where the
goals have presented unusual challenges, and relevant results from
our preliminary playtesting.

4.1 Guided Learning in a Sandbox
In Dragon Architect, our design goal is to center the experience in an
open sandbox (like Minecra�) but provide on-demand, just-in-time
direct guidance for new tools and concepts in the form of small
puzzle segments.

�e ideal we are trying to emulate, like much educational so�-
ware, is a personal human tutor. An e�ective tutor can allow the
player to explore in the sandbox, and, once the player expresses the
need for a tool or feature they do not yet possess, the tutor can guide
them to the appropriate learning material. Knowing when to inter-
vene and what the player is trying to do is a challenge. Intelligent
tutoring systems accomplish this by tracking player knowledge and
skill, which requires both a model of all conceptual knowledge and
a rigid structure of problems with known solution strategies [24].
As we have neither of these, this is not an option.

Dragon Architect must strike a di�cult balance: get the player
to the sandbox where they can experiment as quickly and o�en as
possible, but support the player in the gradual acquisition of new
knowledge and skills. We do not wish to overwhelm new players
with the full suite of features and tools upon start, so we lock many
features behind puzzles until the player has a chance to learn about
them in a guided, isolated se�ing. �is is in tension with the desire
to quickly allow a player access to the tools they need without
jumping through hoops and challenges. Systems like Scratch are
fully open from the start, and expect an expert to guide newcomers

Dragon Architect: Open Design Problems for Guided
Learning in a Creative Computational Thinking Sandbox Game FDG’17, August 14-17, 2017, Hyannis, MA, USA

through the system. We aim to avoid making learning in Dragon
Architect substantially contingent on external support.

Empirically, players initially struggle with Dragon Architect’s
hybrid structure, but enjoy it once it is explained to them. Very
few players discover the puzzles without external guidance, a clear
failure point if we wish the system to function without an instruc-
tor. In playtests, players would o�en ask if they game supports a
feature (e.g., moving up and down, removing blocks), when such a
feature was directly advertised in a list of available modules. A�er
being informed of this, players began to understand the basic cycle
between sandbox and puzzles and started checking for other skills
they could learn through puzzles.

We have also found that creating in the sandbox is not necessarily
the activity of choice for every player. Some choose to doodle in
the sandbox, sca�ering cubes, o�en of di�erent colors, in lines and
clusters without trying to assemble anything in particular. Others
exclusively seek out the game’s puzzles, more interesting in solving
those than working in the sandbox. Its hybrid structure allows
Dragon Architect to appeal to players with either interest.

4.2 Collaboration in a Multiplayer
Environment

Social environments are an important part of guiding discovery
learning and a major goal of our project. �e goal is to create a
shared virtual environment in which players can assist each other
and collaborate. �is works naturally in multiplayer games such as
Minecra�, where players on the same game server can explore and
shape a persistent world together. �is shared world has several
bene�ts. It is easy for players to share their creations with others,
but at the same time work relatively independently. Changes to
the world are localized around the player, so one player does not
interfere with those far away. At the same time, working closely
together is as simple as walking to the same place in the world.

Such interactions could be invaluable for programming, support-
ing activities such as pair programming and mentoring. However,
the persistent world model con�icts with other design considera-
tions. It is very easy to accidentally (or intentionally) write pro-
grams that have non-localized e�ects, interfering with others in
the shared world. Programming o�en relies on rerunning the same
program over and over to iterate and �nd bugs, but this requires
rese�ing the world state to a consistent start state. While such a
reset or undo feature is an option, if a player writes code that places
blocks all over another player’s work, how should the game reset
state in a consistent and understandable manner? �is tension is
even present in a single-player se�ing. Playtesters that wanted
to construct complex objects, such as a town of buildings, o�en
wanted to do so piecemeal. �ey write separate programs to build
each part without wanting to reset the world to a static start state.

Our current approach does not su�ciently resolve this tension,
and only addresses the single-player se�ing. �e sandbox makes
the e�ects of programs permanent by default, including any cubes
placed and the dragon’s position. To allow for experimentation, the
player has the option to switch to workshop mode, which resets the
world to its previous state each time the player runs a new program.
�e player can freely toggle between these two modes, testing
out each program before commi�ing to its results. In practice,

players have a di�cult time understanding the nuanced di�erence
between the two modes, despite dramatic visual cues. �e feature
is empirically both di�cult to discover and di�cult to understand
even once explained.

In contrast, Dragon Architect’s gallery has successfully promoted
a shared social context during playtesting. A�er players have a
chance to get familiar with the game and begin sharing their cre-
ations in the gallery, it serves as a catalyst for players to talk to each
other about what they are creating, go over to other players’ com-
puters to see how something was done, and remix or incorporate
things posted to the gallery into their own work.

5 RELATEDWORK
�e development of tools designed to teach novices computational
thinking dates back to systems such as Papert’s LOGO [31]. Kelleher
and Pausch review this extensive body of work and describe a
taxonomy of these systems [21]. Within that taxonomy, Dragon
Architect �ts best as a teaching system that targets structuring
programs and aims to provide learning support both through social
learning and providing a motivating context. In this section, we
summarize the current space of educational computational thinking
tools. For a more comprehensive survey, see Kelleher and Pausch’s
review or Salleh et al.’s more recent review [34].

Both early tools like LOGO and recent tools like Scratch have an
open-ended and creative approach. LOGO allowed players to create
drawings by controlling a robot with a virtual pen. While LOGO
was text-based, many modern examples use visual programming
languages. Alice [7], like Scratch, focuses on storytelling, though it
does so in a 3D animation context with more �ne-grained control
than Scratch o�ers. Other systems such as AgentSheets [32] let
users create simulations and games. AgentSheets models its world
as agents on a grid, and players can program the behavior of each
type of agent, conditioning behavior on the contents of adjacent
grid cells. �ere are also educational programming games that have
their players tackle open-ended challenges. CodeSpells [8] is a game
in which players write Java code to cast spells that control their
environment. In RoboBuilder [36], players program robots to ba�le
against enemies. BlockStudio [1] lets users create rule-based games
and simulations using programming by demonstration.

Another type of computational thinking educational system is
instead arranged as a linear sequence of problems or puzzles. Step-
by-step lessons are available from Khan Academy and Codecademy,
in which users program in an industry programming language
such as JavaScript or Java, sometimes with accompanying video.
Code.org provides sequences of videos and puzzles where users
control characters from popular games like Rovio’s Angry Birds
or movies like Disney’s Frozen with drag-and-drop programming.
Using programming by demonstration to seamlessly integrate game-
play and educational content, �e Orb Game [9] teaches players
algorithms for various list operations. BOTS, a programming puzzle
game, has been used to study user-generated educational content in
terms of submission requirements [15] and level editor design [16].

Games can be educational tools by design, or be adapted to edu-
cational purposes. Minecra�’s popularity and its ability to engage
children have prompted several e�orts to use it as an educational
tool. Minecra� Education Edition (Mojang, 2017) is an o�cial variant

FDG’17, August 14-17, 2017, Hyannis, MA, USA Aaron Bauer, Eric Butler, and Zoran Popović

of Minecra� with a number of classroom-centric features. Teachers
have used it in lessons on math, English language arts, computer
science, and other subjects. Zorn et al. created CodeBlocks, a plugin
for Minecra� that allows players to program a robot within the
game, and they found that CodeBlocks increased non-programmers’
interest in programming [38]. Another avenue is to teach pro-
gramming by having students create modi�cations and plugins for
Minecra�, through mods such as ScriptCra� [17].

6 CONCLUSION
Educational games have enormous potential to enhance wide-spread
access to an engaging introduction to computational thinking. We
have discussed crucial open questions related to e�ectively teaching
computational thinking in games. Evidence from the educational
literature argues for the direct teaching of problem-solving strate-
gies such as divide and conquer, and we described a initial a�empt
to do so in our computational thinking game, Dragon Architect. �e
educational literature also highlights the need to combine open-
ended exploration with su�cient structured guidance. In order to
avoid requiring the presence of an instructor or mentor, an edu-
cational game like Dragon Architect must �nd a way to provide a
�exible progression with both player-driven exploration and direct
instruction. We addressed this thorny design problem by having
players alternate at their own pace between experimenting in a
sandbox and unlocking new features with short sequences of puz-
zles, but our preliminary playtests indicated players need additional
sca�olding to easily understand this dynamic. Finally, education
research makes clear the bene�ts of incorporating a social context
into the learning environment. Dragon Architect provides players a
way to share what they create and see what others have shared, but
pushing further and supporting real-time collaboration in a shared
world presents signi�cant design challenges.

ACKNOWLEDGMENTS
�is work was supported by the National Science Foundation under
Grant No.: DRL-1639576 and Grant No.: DGE-1546510 and by the
Oak Foundation under Grant No.: 16-644.

REFERENCES
[1] Rahul Banerjee, Jason Yip, Kung Jin Lee, and Zoran Popović. 2016. Empowering

Children To Rapidly Author Games and Animations Without Writing Code. In
Proceedings of the �e 15th International Conference on Interaction Design and
Children. ACM, 230–237.

[2] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking to
K-12: what is Involved and what is the role of the computer science education
community? ACM Inroads 2, 1 (2011), 48–54.

[3] John D Bransford, Ann L Brown, Rodney R Cocking, et al. 2000. How people
learn. (2000), 219-220 pages.

[4] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and
assessing the development of computational thinking. In Proceedings of the 2012
annual meeting of the American Educational Research Association.

[5] Amy Bruckman. 2000. Situated support for learning: Storm’s weekend with
Rachael. �e Journal of the Learning Sciences 9, 3 (2000), 329–372.

[6] Amy Susan Bruckman. 1997. MOOSE Crossing: Construction, community, and
learning in a networked virtual world for kids. Ph.D. Dissertation. MIT.

[7] Stephen Cooper, Wanda Dann, and Randy Pausch. 2000. Alice: a 3-D tool for
introductory programming concepts. In Journal of Computing Sciences in Colleges,
Vol. 15. Consortium for Computing Sciences in Colleges, 107–116.

[8] Sarah Esper, Stephen R Foster, and William G Griswold. 2013. On the nature
of �res and how to spark them when you’re not there. In Proceeding of the 44th
ACM technical symposium on Computer science education. ACM, 305–310.

[9] Stephen R Foster, Sorin Lerner, and William G Griswold. 2015. Seamless Integra-
tion of Coding and Gameplay: Writing Code Without Knowing it.. In FDG.

[10] James Paul Gee. 2003. What video games have to teach us about learning and
literacy. Computers in Entertainment (CIE) 1, 1 (2003), 20–20.

[11] Douglas A Gentile and J Ronald Gentile. 2008. Violent video games as exemplary
teachers: A conceptual analysis. Journal of Youth and Adolescence 37, 2 (2008).

[12] Lucas Gillispie. 2014. From Students to Heroes: Unlocking Students’ Poten-
tial �rough Games. In Procedings of the 9th International Conference on the
Foundations of Digital Games. Keynote Presentation.

[13] Shuchi Grover and Roy Pea. 2013. Computational �inking in K–12 A Review of
the State of the Field. Educational Researcher 42, 1 (2013), 38–43.

[14] MP Jacob Habgood and Shaaron E Ainsworth. 2011. Motivating children to learn
e�ectively: Exploring the value of intrinsic integration in educational games.
�e Journal of the Learning Sciences 20, 2 (2011), 169–206.

[15] Andrew Hicks, Veronica Cateté, and Ti�any Barnes. 2014. Part of the Game:
Changing Level Creation to Identify and Filter Low �ality User-Generated
Levels. In 9th International Conference on the Foundations of Digital Games.

[16] Drew Hicks, Zhongxiu Liu, and Ti�any Barnes. 2016. Measuring Gameplay A�or-
dances of User-Generated Content in an Educational Game. In 9th International
Conference on Educational Data Mining.

[17] Walter Higgins. 2016. ScriptCra�. h�p://scriptcra�js.org/. (2016). Accessed:
2017-02-19.

[18] Gallup Inc. and Google. 2015. Searching for Computer Science: Access and
Barriers in U.S. K-12 Education. (2015). h�ps://services.google.com/�/�les/misc/
searching-for-computer-science report.pdf

[19] Yasmin B. Kafai. 2006. Constructionism. In Cambridge Handbook of the Learning
Sciences, R. Keith Sawyer (Ed.). Cambridge University Press, 35–46.

[20] Cagin Kazimoglu, Mary Kiernan, Liz Bacon, and Lachlan Mackinnon. 2012. A
serious game for developing computational thinking and learning introductory
computer programming. Procedia-Social and Behavioral Sciences 47 (2012).

[21] Caitlin Kelleher and Randy Pausch. 2005. Lowering the barriers to program-
ming: A taxonomy of programming environments and languages for novice
programmers. ACM Computing Surveys (CSUR) 37, 2 (2005), 83–137.

[22] John Kirriemuir. 2002. �e relevance of video games and gaming consoles to
the Higher and Further Education learning experience. JISC Techwatch report
(2002).

[23] Paul A Kirschner, John Sweller, and Richard E Clark. 2006. Why minimal guidance
during instruction does not work: An analysis of the failure of constructivist,
discovery, problem-based, experiential, and inquiry-based teaching. Educational
psychologist 41, 2 (2006), 75–86.

[24] Kenneth R. Koedinger and Albert Corbe�. 2006. Cognitive Tutors: Technology
Bringing Learning Sciences to the Classroom. In Cambridge Handbook of the
Learning Sciences, R. Keith Sawyer (Ed.). Cambridge University Press, 61–77.

[25] Detlev Leutner. 1993. Guided discovery learning with computer-based simulation
games: E�ects of adaptive and non-adaptive instructional support. Learning and
Instruction 3, 2 (1993), 113–132.

[26] Sze Yee Lye and Joyce Hwee Ling Koh. 2014. Review on teaching and learn-
ing of computational thinking through programming: What is next for K-12?
Computers in Human Behavior 41 (2014), 51–61.

[27] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn
Eastmond. 2010. �e scratch programming language and environment. ACM
Transactions on Computing Education (TOCE) 10, 4 (2010), 16.

[28] Richard E Mayer. 2004. Should there be a three-strikes rule against pure discovery
learning? American Psychologist 59, 1 (2004), 14.

[29] Richard E Mayer and Merlin C Wi�rock. 1996. Problem Solving Transfer. In
Handbook of educational psychology, David C Berliner and Robert C Calfee (Eds.).
Routledge.

[30] National Research Council. 2010. Report of a Workshop on the Scope and Nature
of Computational �inking. National Academies Press.

[31] Seymour Papert. 1980. Mindstorms: Children, Computers, and Powerful Ideas.
Basic Books, Inc., New York, NY, USA.

[32] Alexander Repenning, Andri Ioannidou, and John Zola. 2000. AgentSheets:
End-user programmable simulations. Journal of Arti�cial Societies and Social
Simulation 3, 3 (2000), 351–358.

[33] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Eve-
lyn Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM (2009).

[34] Syahanim Mohd Salleh, Zarina Shukur, and Hairulliza Mohamad Judi. 2013. Anal-
ysis of Research in Programming Teaching Tools: An Initial Review. Procedia-
Social and Behavioral Sciences 103 (2013), 127–135.

[35] Andreas Ste�k and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. Trans. Comput. Educ. 13, 4, Article 19 (Nov.
2013), 40 pages. h�ps://doi.org/10.1145/2534973

[36] David Weintrop and Uri Wilensky. 2013. Robobuilder: a computational thinking
game. In SIGCSE. 736.

[37] Kirsten N. Whitley. 1997. Visual programming languages and the empirical
evidence for and against. Journal of Visual Languages & Computing 8, 1 (1997).

[38] Christopher Zorn, Chadwick A Wingrave, Emiko Charbonneau, and Joseph J
LaViola Jr. 2013. Exploring Minecra� as a conduit for increasing interest in
programming.. In FDG. Citeseer, 352–359.

http://scriptcraftjs.org/
https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf
https://services.google.com/fh/files/misc/searching-for-computer-science_report.pdf
https://doi.org/10.1145/2534973

	Abstract
	1 Introduction
	2 Game Description
	3 Research Questions
	3.1 Teaching Computational Thinking
	3.2 Structure of Learning Environment

	4 Open Design Problems
	4.1 Guided Learning in a Sandbox
	4.2 Collaboration in a MultiplayerEnvironment

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

